MATHEMATICAL SKILLS

GEARS, GEAR TRAINS AND COMPOUND GEARS

ASSOCIATED EXAMINATION QUESTIONS

DESIGN AND TECHNOLOGY

NOT FOR SALE OR REDISTRIBUTION

THIS MATERIAL CANNOT BE EDITED OR PLACED ON ANY OTHER FORM OF MEDIA, INCLUDING POWERPOINTS, INTRANETS, WEBSITES

CALCULATING GEAR RATIO (VELOCITY RATIO)

In examinations, one of the first questions will be - to work out the 'gear ratio' (sometimes called velocity ratio). As a guide - always assume that the larger gear revolves one revolution. The number of rotations of the second gear has then to be worked out.

In the example below, the DRIVER has 60 teeth and because it is the largest we say that it revolves once. The DRIVEN gear has 30 teeth. Simply divide 60 teeth by 30 teeth to work out the number of revolutions of the driven gear.
$\frac{\text { Distance moved by Effort }}{\text { Distance moved by Load }}=\frac{60 T(\text { GEAR A) }}{30 T(\text { GEAR B) }}$
$=\frac{1}{2}=\frac{\text { Input movement }}{\text { Output movement }}$
= Driver: Driven
1:2

2A.

DRIVEN
(LOAD)
WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

3A.

B

$=\frac{3}{1}=\frac{\text { Input movement }}{\text { Output movement }}$
= Driver: Driven
$3: 1$
$\frac{\text { Distance moved by Effort }}{\text { Distance moved by Load }}=\frac{20 T(\text { GEAR A })}{80 T(\operatorname{GEAR~B})}$
$=\frac{4}{1}=\frac{\text { Input movement }}{\text { Output movement }}$
$=\quad$ Driver : Driven
4 : 1
DRIVEN
(LOAD)

CALCULATING GEAR RATIO (VELOCITY RATIO)

In examinations, one of the first questions will be - to work out the 'gear ratio' (sometimes called velocity ratio). As a guide - always assume that the larger gear revolves one revolution. The number of rotations of the second gear has then to be worked out.

CALCULATING REVOLUTIONS PER MINUTE (RPM)

In the example below, the DRIVER gear is larger than the DRIVEN gear. The general rule is - large to small gear means 'multiply' the velocity ratio by the rpm of the first gear. Divide 60 teeth by 30 teeth to find the velocity ratio. Multiply this number (2) by the rpm (120). This gives an answer of 240rpm.

B

75 TEETH

GEAR A	GEAR B
25 teeth	75 teeth
60 rpm	$?$

$$
\begin{aligned}
& \frac{75}{25}=3 \\
= & \frac{60}{3}=20 \mathrm{revs} / \mathrm{min}
\end{aligned}
$$

CALCULATING REVOLUTIONS PER MINUTE (RPM)

B
75 TEETH

GEAR A	GEAR B
25 teeth	75 teeth
60 rpm	

$-=$
$=-\quad$ revs $/ \mathrm{min}$

GEAR A	GEAR B
20 teeth	80 teeth
100 rpm	

$=-\quad$ revs/min

GEAR TRAINS - EXAMPLE QUESTIONS AND ANSWERS

When faced with three gears, the question can be broken down into two parts. First work on Gears A and B. When this has been solved, work on gears B and C.

The diagram above shows a gear train composed of three gears. GearArevolves at 60 revs $/ \mathrm{min}$ in a clockwise direction.
What is the output in revolutions per minute at Gear C?
In what direction does Gear C revolve?

GEAR A	GEAR B	GEAR C
20 teeth	60 teeth	10 teeth
60 rpm	$?$	$?$

First work out the speed at Gear B. $\quad \frac{60}{20}{ }_{\text {teeth }} \frac{B}{A}=3$

$$
=\frac{60 \mathrm{rpm}}{3}=20 \mathrm{revs} / \mathrm{min} \text { at }{ }^{\prime} \mathrm{B} \text { ' }
$$

(Remember B is larger than A therefore, B outputs less revs/min and is slower)

Next, take B and C. C is smaller, therefore, revs/minute will increase and rotation will be faster.

$$
\frac{60}{10}{ }_{\text {teeth }}^{\text {teeth }} \frac{B}{C}=6
$$

20 REVS X $6=120 \mathrm{revs} / \mathrm{min}$ at ' C '
What direction does C revolve?
A is clockwise, B consequently is anti-clockwise and C is therefore clockwise.

GEAR TRAINS - EXAMPLE QUESTIONS

When faced with three gears the question can be broken down into two parts. First work on Gears A and B. When this has been solved work on gears B and C.

(Remember B is larger than A therefore, B outputs less revs/min and is slower)

Next, take B and C. C is smaller, therefore, revs/minute will increase and rotation will be faster.

$$
\mathcal{T}_{\text {teeth }}^{\text {teeth }} \frac{\mathrm{B}}{\mathrm{C}}=
$$

\qquad
What direction does C revolve?
A is clockwise, B consequently is anti-clockwise and C is therefore \qquad

GEAR TRAINS - EXAMPLE QUESTIONS AND ANSWERS

When faced with three gears the question can be broken down into two parts. First work on Gears A and B. When this has been solved work on gears B and C.

The diagram opposite shows a gear train composed of three gears. Gear A revolves at 90 revs/min in a clockwise direction.
What is the output in revolutions per minute at Gear C?
In what direction does Gear C revolve?

GEAR A	GEAR B	GEAR C
30 teeth	90 teeth	15 teeth
90 rpm	$?$	$?$

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS
First work out the speed at Gear B. $\quad \frac{90}{30}{ }_{\text {teeth }}^{\text {teeth }} \frac{B}{A}=3$

$$
=\frac{90 \mathrm{rpm}}{3}=30 \mathrm{revs} / \mathrm{min} \text { at }{ }^{\prime} \mathrm{B} \text { ' }
$$

(Remember B is larger than A therefore, B outputs less revs/min and is slower)

Next, take B and C. C is smaller, therefore, revs/minute will increase and rotation will be faster.

$$
\begin{gathered}
\frac{90}{15} \text { teeth } \frac{\mathrm{B}}{\mathrm{C}}=6 \\
30 \text { REVS } \times 6=180 \mathrm{revs} / \mathrm{min} \text { at ' } \mathrm{C} \text { ' }
\end{gathered}
$$

What direction does C revolve?
A is clockwise, B consequently is anti-clockwise and C is therefore clockwise.

GEAR TRAINS - EXAMPLE QUESTIONS AND ANSWERS

When faced with three gears the question can be broken down into two parts. First work on Gears A and B. When this has been solved work on gears B and C.

The diagram opposite shows a gear train composed of three gears. Gear A revolves at 90 revs/min in a clockwise direction.
What is the output in revolutions per minute at Gear C?
In what direction does Gear C revolve?

GEAR A	GEAR B	GEAR C
30 teeth	90 teeth	15 teeth
90 rpm		

www.technologystudent.com © 2017 V.Ryan © 2017

First work out the speed at Gear B. - teeth $\frac{B}{\text { teeth }}=$

$$
=\underline{90}{ }^{\mathrm{rpm}}=\ldots \mathrm{revs} / \mathrm{min} \text { at ' } \mathrm{B} \text { ' }
$$

(Remember B is larger than A therefore, B outputs less revs/min and is slower)

Next, take B and C. C is smaller, therefore, revs/minute will increase and rotation will be faster.

$$
\begin{gathered}
\text { _Tens }_{\text {teeth }}^{\text {teeth }} \frac{\mathrm{B}}{\mathrm{C}}= \\
\quad=\ldots \quad \mathrm{revs} / \mathrm{min} \text { at 'C' }
\end{gathered}
$$

What direction does C revolve?
A is clockwise, B consequently is anti-clockwise and C is therefore \qquad

COMPOUND GEARS - EXAMPLE QUESTIONS AND ANSWERS

Below is a question regarding 'compound gears'. Gears C and B represent a compound gear as they appear 'fixed' together. When drawn with a compass they have the same centre. Two gears 'fixed' together in this way rotate together and at the same RPM. When answering a question like this split it into two parts. Treat gears A and B as one question AND C and D as the second part.

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/
www.technologystudent.com © 2017 V.Ryan © 2017
This is an example of a "compound gear train". Gear A rotates in a clockwise direction at 30 revs $/ \mathrm{min}$. What is the output in revs/min at D and what is the direction of rotation?

GEAR A	GEAR B	GEAR C	GEAR D
120 teeth	40 teeth	80 teeth	20 teeth

First find revs/min at Gear B.

$$
\begin{aligned}
& \frac{120}{40 \text { teeth } \frac{B}{A}=3} \\
& 30 \mathrm{rpm} \times 3=90 \mathrm{rpm} / \mathrm{min}
\end{aligned}
$$

B is smaller therefore it rotates faster and revs/min increase.
C is fixed to B and therefore, rotates at the same speed.
90 REVS/MIN at C

Next find revs/min at Gear D.

$$
\begin{aligned}
& \frac{80}{20}{ }_{\text {teeth }} \frac{C}{D}=4 \\
& 90 \mathrm{rpm}(\text { at } \mathrm{C}) \times 4=360 \mathrm{rpm} / \mathrm{min}
\end{aligned}
$$

D is smaller than C, therefore rotates faster (increased revs $/ \mathrm{min}$).
A revolves in a clockwise direction, B is therefore anti-clockwise, C is fixed to B and is also anti-clockwise, which means D revolves in a clockwise direction.

COMPOUND GEARS - EXAMPLE QUESTIONS AND ANSWERS

Below is a question regarding 'compound gears'. Gears C and B represent a compound gear as they appear 'fixed' together. When drawn with a compass they have the same centre. Two gears 'fixed' together in this way rotate together and at the same RPM. When answering a question like this split it into two parts. Treat gears A and B as one question AND C and D as the second part.

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017
This is an example of a "compound gear train". Gear A rotates in a clockwise direction at $30 \mathrm{revs} / \mathrm{min}$. What is the output in revs/min at D and what is the direction of rotation?

GEAR A	GEAR B	GEAR C	GEAR D
120 teeth	40 teeth	80 teeth	20 teeth

First find revs/min at Gear B.

$$
\begin{aligned}
& __{\text {teeth }}^{\text {teeth }} \frac{B}{A}= \\
& \ldots \quad \mathrm{rpm} X __\quad \mathrm{rpm} / \mathrm{min}
\end{aligned}
$$

B is smaller therefore it rotates faster and revs/min increase.
C is fixed to B and therefore, rotates at the same speed.
_ REVS/MIN at C

Next find revs/min at Gear D.

$$
\begin{aligned}
__{\text {teeth }}^{\text {teeth }} \frac{C_{1}}{D} & = \\
\mathrm{rpm} & (\text { at } \mathrm{C}) X_{-} \\
& =\quad \mathrm{rpm} / \mathrm{min}
\end{aligned}
$$

D is smaller than C, therefore rotates faster (increased revs $/ \mathrm{min}$).
A revolves in a clockwise direction, B is therefore anti-clockwise, C is fixed to B and is also anti-clockwise, which means D revolves in a \qquad direction.

COMPOUND GEARS- EXAMPLE QUESTIONS AND ANSWERS

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS

Try the following question:

What is the revs/min at gear D and what is its direction?

