MATHEMATICAL SKILLS

AREA OF A SQUARE AND ASSOCIATED EXAMINATION QUESTIONS

DESIGN AND TECHNOLOGY

NOT FOR SALE OR REDISTRIBUTION
THIS MATERIAL CANNOT BE EDITED OR PLACED ON ANY OTHER FORM OF MEDIA, INCLUDING POWERPOINTS, INTRANETS, WEBSITES ETC...

Definition: A square has four sides, with each being equal in length. Each of the four internal angles are right angles, 90 degrees.

SAMPLE QUESTIONS

Calculate the area of the square shown opposite. The length of one side is 100 mm

AREA $=X^{2}$

AREA $=100 \mathrm{~mm} \times 100 \mathrm{~mm}$

AREA $=10000 \mathrm{~mm}^{2}$

Calculate the area of the square shown opposite. The length of one side is 50 mm

AREA $=X^{2}$
AREA $=50 \mathrm{~mm} \times 50 \mathrm{~mm}$
AREA $=2500 \mathrm{~mm}^{2}$

Calculate the area of the square shown opposite. The length of one side is 90 mm

AREA $=X^{2}$

AREA $=90 \mathrm{~mm} \times 90 \mathrm{~mm}$

AREA $=8100 \mathrm{~mm}^{2}$

Calculate the area of the square shown opposite. The length of one side is 70 mm

AREA $=X^{2}$

AREA $=70 \mathrm{~mm} \times 70 \mathrm{~mm}$

AREA $=4900 \mathrm{~mm}^{2}$

Calculate the area of the square shown opposite. The length of one side is 80 mm
$\operatorname{AREA}=\mathrm{X}^{2}$

AREA $=80 \mathrm{~mm} \times 80 \mathrm{~mm}$

AREA $=6400 \mathrm{~mm}^{2}$

Calculate the area of the square shown opposite. The length of one side is 60 mm

AREA $=X^{2}$

AREA $=60 \mathrm{~mm} \times 60 \mathrm{~mm}$

AREA $=3600 \mathrm{~mm}^{2}$

Definition: A square has four sides, with each being equal in length. Each of the four internal angles are right angles, 90 degrees.

SAMPLE QUESTIONS

Calculate the area of the square shown opposite. The length of one side is 100 mm
\qquad
\qquad
\qquad
\qquad
100 mm

Calculate the area of the square shown opposite. The length of one side is 50 mm
\qquad
\qquad
\qquad
\qquad
50 mm

SAMPLE QUESTIONS

Calculate the area of the square shown opposite. The length of one side is 80 mm
\qquad
\qquad
\qquad
\qquad

Calculate the area of the square shown opposite. The length of one side is 60 mm
\qquad
\qquad
\qquad
\qquad

AREA OF A SQUARE - EXAMINATION QUESTION

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/
A plywood panel for a cabinet is seen below.

1. Calculate the area of the plywood required, before it is cut to shape (the overall square of plywood required, before it is cut to an L shape).
2. Calculate the area of the final L shape.

First, calculate the area of the uncut plywood, by treating it as a square $500 \mathrm{~mm} x$ 500 mm .

AREA $=$ LENGTH OF SIDE X LENGTH OF SIDE
AREA $=500 \times 500$
AREA $=250000 \mathrm{~mm}^{2}$
Now, calculate the area of the smaller piece to be cut away, during the shaping of the panel

AREA $=$ LENGTH OF SIDE X LENGTH OF SIDE
AREA $=250 \times 250$
AREA $=62500 \mathrm{~mm}^{2}$
Now subtract the smaller area from the area of the uncut plywood.
$250000-62500=187500$

AREA OF FINAL SHAPED PIECE IS $187500 \mathrm{~mm}^{2}$

AREA OF A SQUARE - EXAMINATION QUESTION

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017
A plywood panel for a cabinet is seen below.

1. Calculate the area of the plywood required, before it is cut to shape (the overall square of plywood required, before it is cut to an L shape).
2. Calculate the area of the final L shape.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

AREA OF A SQUARE - EXAMINATION QUESTION

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017
An acrylic window for a school project seen below, is composed of two pieces, accurately cut to size on a laser cutter. They fit perfectly together.

1. Calculate the area of piece A
2. Calculate the area of piece. B

First, calculate the entire area of ' A ', without the centre piece being removed, by treating it as a square $400 \mathrm{~mm} \times 400 \mathrm{~mm}$.

AREA = LENGTH OF SIDE X LENGTH OF SIDE
AREA $=400 \times 400$
AREA $=160000 \mathrm{~mm}^{2}$
Now, calculate the area of the smaller piece ' B ', which is also the size of the piece to be removed from ' A '.

AREA = LENGTH OF SIDE X LENGTH OF SIDE
AREA $=200 \times 200$
AREA $=40000 \mathrm{~mm}^{2}$
Now subtract the smaller area ' B ' from the area of ' A '. The answer will be the area of ' A ' with it's central window of material removed.
$160000-40000=120000 \mathrm{~mm}^{2}$
AREA OF FINAL SHAPED PIECE 'A’ WITHOUT CENTRAL PIECE IS $120000 \mathrm{~mm}^{2}$ AREA OF PIECE 'B' IS $40000 \mathrm{~mm}^{2}$

AREA OF A SQUARE - EXAMINATION QUESTION

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017 An acrylic window for a school project seen below, is composed of two pieces, accurately cut to size on a laser cutter. They fit perfectly together.

1. Calculate the area of piece A
2. Calculate the area of piece. B

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
