MATHEMATICAL SKILLS

AREA OF A RECTANGLE AND ASSOCIATED EXAMINATION QUESTIONS

DESIGN AND TECHNOLOGY

NOT FOR SALE OR REDISTRIBUTION
THIS MATERIAL CANNOT BE EDITED OR PLACED ON ANY OTHER FORM OF MEDIA, INCLUDING POWERPOINTS, INTRANETS, WEBSITES ETC...

CALCULATING THE AREA OF A RECTANGLE

Definition: A rectangle has four sides, with the opposite sides being the same length and parallel. Each of the four internal angles are right angles, 90 degrees.

FORMULA
AREA $=X$ multiplied by Y
AREA =LENGTH x HEIGHT

SAMPLE QUESTIONS

Calculate the area of the rectangle shown opposite.

AREA $=X$ multiplied by Y
$A R E A=100 \mathrm{~mm} \times 50 \mathrm{~mm}$
AREA $=5000 \mathrm{~mm}^{2}$

Calculate the area of the rectangle shown opposite.

AREA $=X$ multiplied by Y

AREA $=90 \mathrm{~mm} \times 60 \mathrm{~mm}$
AREA $=5400 \mathrm{~mm}^{2}$

Calculate the area of the rectangle shown opposite.

AREA $=X$ multiplied by Y
AREA $=110 \mathrm{~mm} \times 70 \mathrm{~mm}$

AREA $=7700 \mathrm{~mm}^{2}$

Calculate the area of the rectangle shown opposite.

AREA $=X$ multiplied by Y
$A R E A=120 \mathrm{~mm} \times 80 \mathrm{~mm}$

AREA $=9600 \mathrm{~mm}^{2}$

Calculate the area of the rectangle shown opposite.

AREA = X multiplied by Y
$A R E A=115 \mathrm{~mm} \times 75 \mathrm{~mm}$

AREA $=8625 \mathrm{~mm}^{2}$

Calculate the area of the rectangle shown opposite.

AREA $=X$ multiplied by Y

AREA $=135 \mathrm{~mm} \times 85 \mathrm{~mm}$

AREA $=11475 \mathrm{~mm}^{2}$

Definition: A rectangle has four sides, with the opposite sides being the same length and parallel. Each of the four internal angles are right angles, 90 degrees.

FORMULA
AREA $=X$ multiplied by Y
AREA =LENGTH x HEIGHT

SAMPLE QUESTIONS

Calculate the area of the rectangle shown opposite.
\qquad
\qquad
\qquad
\qquad

Calculate the area of the rectangle shown opposite.

90 mm

SAMPLE QUESTIONS

Calculate the area of the rectangle shown opposite.
\qquad
\qquad
\qquad
\qquad

Calculate the area of the rectangle shown opposite.
\qquad
\qquad
\qquad
\qquad

Calculate the area of the rectangle shown opposite.
\qquad
\qquad
\qquad
\qquad

Calculate the area of the rectangle shown opposite.
\qquad
\qquad
\qquad

135 mm

AREA OF A RECTANGLE - EXAMINATION QUESTION

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823
An acrylic panel for a storage unit is seen below.

1. Calculate the area of the acrylic required, before it is cut to shape (the overall rectangle of acrylic required, before it is cut to an L shape).
2. Calculate the area of the final L shape.

First, calculate the area of the uncut acrylic, by treating it as a rectangle $500 \mathrm{~mm} x$ 400 mm .

AREA $=$ LENGTH \times HEIGHT
AREA $=500 \times 400$
AREA $=200000 \mathrm{~mm}^{2}$
Now, calculate the area of the smaller rectangular piece to be cut away, during the shaping of the panel

AREA $=$ LENGTH X HEIGHT
AREA $=250 \times 200$
AREA $=50000 \mathrm{~mm}^{2}$
Now subtract the smaller area from the area of the uncut plywood.
$200000-50000=150000$
AREA OF FINAL SHAPED PIECE IS $150000 \mathrm{~mm}^{2}$

AREA OF A RECTANGLE - EXAMINATION QUESTION

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS
An acrylic panel for a storage unit is seen below.

1. Calculate the area of the acrylic required, before it is cut to shape (the overall rectangle of acrylic required, before it is cut to an L shape).
2. Calculate the area of the final L shape.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

AREA OF A RECTANGLE - EXAMINATION QUESTION

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS
A rectangular acrylic window for an Art project seen below, is composed of two rectangular pieces, accurately cut to size on a laser cutter. They fit perfectly together.

1. Calculate the area of piece A
2. Calculate the area of piece. B

200mm

First, calculate the entire area of 'A', without the smaller piece being removed, by treating it as a rectangle $400 \mathrm{~mm} \times 300 \mathrm{~mm}$.

AREA $=$ LENGTH X HEIGHT
AREA $=400 \times 300$
AREA $=120000 \mathrm{~mm}^{2}$
Now, calculate the area of the smaller rectangular piece ' B ', which is also the size of the piece to be removed from ' A '.

AREA $=$ LENGTH X HEIGHT
AREA $=200 \times 150$
AREA $=30000 \mathrm{~mm}^{2}$

Now subtract the smaller rectangular area ' B ' from the total area of rectangle ' A '. The answer will be the area of ' A ', with the smaller rectangle of waste acrylic being removed.
$120000-30000=90000 \mathrm{~mm}^{2}$

AREA OF FINAL SHAPED PIECE ‘A’ WITHOUT THE SMALLER PIECE IS 90000mm²
AREA OF PIECE ‘B' IS $30000 \mathrm{~mm}^{2}$

AREA OF A RECTANGLE - EXAMINATION QUESTION

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017 A rectangular acrylic window for an Art project seen below, is composed of two rectangular pieces, accurately cut to size on a laser cutter. They fit perfectly together.

1. Calculate the area of piece A
2. Calculate the area of piece. B

200mm

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

