MATHEMATICAL SKILLS

AREA AND CIRCUMFERENCE OF A CIRCLE ASSOCIATED EXAMINATION QUESTIONS

 DIAMETER(d)
DESIGN AND TECHNOLOGY

NOT, FOR SALEOR REDISTRIBUTION
THIS MATERIAL CANNOT BE EDITED OR PLACED'ON ANY OTHER FORM OF MEDIA, INCLLUDINGPOWERPOINTS, INTRANETS, WEBSITES ETC...

Definition: A precise curve around a centre. Any point on the curve is an equal distance from the centre. A circle is composed of a circumference (the precise curve) and a diameter and radius.

FORMULA

$$
\begin{aligned}
& \text { AREA }=\pi r^{2} \\
& \pi(\mathrm{pi})=3.14
\end{aligned}
$$

A circle has a radius of 100 mm . What is the area of the circle?

AREA $=\pi r^{2} \quad \pi(p i)=3.14$
AREA $=3.14 \times(100 \times 100)$
AREA $=3.14 \times(10000)$
AREA $=31400 \mathrm{~mm}^{2}$

A circle has a radius of 60 mm . What is the area of the circle?

AREA $=\pi r^{2} \quad \pi(p i)=3.14$
AREA $=3.14 \times(60 \times 60)$
AREA $=3.14 \times(3600)$
AREA $=11304 \mathrm{~mm}^{2}$

A circle has a radius of 80 mm . What is the area of the circle?

AREA $=\pi r^{2}$
$\pi(p i)=3.14$
AREA $=3.14 \times(80 \times 80)$
AREA $=3.14 \times(6400)$
AREA $=20096 \mathrm{~mm}^{2}$

A circle has a radius of 30 mm . What is the area of the circle?

> AREA $=\pi r^{2} \quad \pi(\mathrm{pi})=3.14$ AREA $=3.14 \times(30 \times 30)$ AREA $=3.14 \times(900)$ AREA $=2826 \mathrm{~mm}^{2}$

A circle has a radius of 40 mm . What is the area of the circle?

AREA $=\pi r^{2} \quad \pi(p i)=3.14$
AREA $=3.14 \times(40 \times 40)$
AREA $=3.14 \times(1600)$
AREA $=5024 \mathrm{~mm}^{2}$

A circle has a radius of 75 mm . What is the area of the circle?

AREA $=\pi r^{2} \quad \pi(\mathrm{pi})=3.14$
AREA $=3.14 \times(75 \times 75)$
AREA $=3.14 \times(5625)$
AREA $=17662.5 \mathrm{~mm}^{2}$

A circle has a radius of 45 mm . What is the area of the circle?

AREA $=\pi r^{2} \quad \pi(p i)=3.14$
AREA $=3.14 \times(45 \times 45)$
AREA $=3.14 \times(2025)$
AREA $=6358.5 \mathrm{~mm}^{2}$

A circle has a radius of 90 mm . What is the area of the circle?

AREA $=\pi r^{2} \quad \pi(p i)=3.14$
AREA $=3.14 \times(90 \times 90)$
AREA $=3.14 \times(8100)$
AREA $=25434 \mathrm{~mm}^{2}$

Definition: A precise curve around a centre. Any point on the curve is an equal distance from the centre. A circle is composed of a circumference (the precise curve) and a diameter and radius.

FORMULA

$$
\begin{aligned}
& \text { AREA }=\pi r^{2} \\
& \pi(\mathrm{pi})=3.14
\end{aligned}
$$

SAMPLE QUESTIONS

A circle has a radius of 100 mm . What is the area of the circle?

AREA $=\pi r^{2} \quad \pi(p i)=3.14$
\qquad
\qquad
\qquad
\qquad

A circle has a radius of 60 mm . What is the area of the circle?

AREA $=\pi r^{2}$
$\pi(\mathrm{pi})=3.14$
\qquad
\qquad
\qquad

A circle has a radius of 80 mm . What is the area of the circle?

AREA $=\pi r^{2}$
$\pi(\mathrm{pi})=3.14$
\qquad
\qquad
\qquad
\qquad
A circle has a radius of 30 mm . What is the area of the circle?
AREA $=\pi r^{2}$
$\pi(p i)=3.14$

A circle has a radius of 40 mm . What is the area of the circle?

AREA $=\pi r^{2}$
$\pi(\mathrm{pi})=3.14$

A circle has a radius of 75 mm . What is the area of the circle?

AREA $=\pi r^{2} \quad \pi(p i)=3.14$
\qquad
\qquad

A circle has a radius of 45 mm . What is the area of the circle?

AREA $=\pi r^{2}$
$\pi(p i)=3.14$
\qquad
\qquad
\qquad
AREA $=\pi r^{2} \quad \pi(p i)=3.14$
A circle has a radius of 90 mm . What is the area of the circle?
\qquad
\qquad
\qquad
\qquad

CALCULATING THE CIRCUMFERENCE OF A CIRCLE GIVEN THE RADIUS

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/
Definition: The circumference of a circle is the measurement of the boundary, all the way round, 360 degrees.

A circle has a radius of 100 mm . What is the circumference?

CIRCUMFERENCE $=2 \times \pi x r$
$C=2 \times \pi \times r$
C $=2 \times 3.14 \times 100$
$\mathrm{C}=628 \mathrm{~mm}$

A circle has a radius of 60 mm . What is the circumference?

CIRCUMFERENCE $=2 x \pi x r$
$C=2 \mathrm{x} \pi \mathrm{x}$
C $=2 \times 3.14 \times 60$
$\mathrm{C}=376.8 \mathrm{~mm}$

A circle has a radius of 80 mm . What is the circumference?

CIRCUMFERENCE $=2 \times \pi x r$

$$
\begin{aligned}
& C=2 \times \pi \times r \\
& C=2 \times 3.14 \times 80 \\
& C=502.4 \mathrm{~mm}
\end{aligned}
$$

A circle has a radius of 30 mm . What is the circumference?

CIRCUMFERENCE $=2 x \pi x r$
$C=2 x \pi x r$
C $=2 \times 3.14 \times 30$
$C=188.4 \mathrm{~mm}$

A circle has a radius of 40 mm . What is the circumference?

CIRCUMFERENCE $=2 \times \pi x r$
$C=2 \times \pi \times r$
C $=2 \times 3.14 \times 40$
$\mathrm{C}=251.2 \mathrm{~mm}$

A circle has a radius of 75 mm . What is the circumference?

CIRCUMFERENCE $=2 \times \pi x r$
$C=2 x \pi x r$
C $=2 \times 3.14 \times 75$
$C=471 \mathrm{~mm}$

A circle has a radius of 45 mm . What is the circumference?

CIRCUMFERENCE $=2 x \pi x r$
$C=2 \times \pi \times r$
C $=2 \times 3.14 \times 45$
C $=282.6 \mathrm{~mm}$

A circle has a radius of 90 mm . What is the circumference?

CIRCUMFERENCE $=2 \times \pi x r$
$C=2 x \pi x r$
C $=2 \times 3.14 \times 90$
$\mathrm{C}=565.2 \mathrm{~mm}$

Definition: The circumference of a circle is the measurement of the boundary, all the way round, 360 degrees.

A circle has a radius of 100 mm . What is the circumference?

CIRCUMFERENCE $=2 \times \pi \times r$
\qquad
\qquad
\qquad
\qquad

A circle has a radius of 60 mm . What is the circumference?

CIRCUMFERENCE $=2 \times \pi \times r$
\qquad
\qquad
\qquad
\qquad

A circle has a radius of 80 mm . What is the circumference?

CIRCUMFERENCE $=2 \times \pi x r$

CIRCUMFERENCE - SAMPLE QUESTIONS

A circle has a radius of 30 mm . What is the circumference?

A circle has a radius of 40 mm . What is the circumference?

CIRCUMFERENCE $=2 \times \pi \times r$
\qquad
\qquad
\qquad
\qquad
CIRCUMFERENCE $=2 \times \pi \times r$
\qquad
\qquad
\qquad
\qquad

CIRCUMFERENCE $=2 \times \pi \times r$ the circumference?

A circle has a radius of 45 mm . What is the circumference?

CIRCUMFERENCE $=2 \times \pi \times r$

A circle has a radius of 90 mm . What is the circumference?

CIRCUMFERENCE $=2 \times \pi \times r$
\qquad
\qquad
\qquad
\qquad

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

FORMULA
AREA $=\pi r^{2}$
$\pi(p i)=3.14$

AREA $=3.14 \times(65 \times 65)$
AREA $=3.14 \times(4225)$
AREA $=13266.5 \mathrm{~mm}^{2}$

The round section mild steel bar seen opposite, has a radius of 65 mm .

What is the area of the 'circle' at one end?
What is the circumference of the round section bar?

FORMULA

$$
\begin{gathered}
\text { CIRCUMFERENCE }=2 \times \pi \times r \\
\pi(\mathrm{pi})=3.14
\end{gathered}
$$

$$
C=2 x \pi x r
$$

$$
C=2 \times 3.14 \times 65
$$

$$
\mathrm{C}=408.2 \mathrm{~mm}
$$

The round section mild steel bar seen opposite, has a radius of 110 mm .

What is the area of the 'circle' at one end?
What is the circumference of the round section bar?

FORMULA
$\operatorname{AREA}=\pi r^{2}$
$\pi(p i)=3.14$

FORMULA

$$
\begin{gathered}
\text { CIRCUMFERENCE }=2 \times \pi \times r \\
\pi(\mathrm{pi})=3.14
\end{gathered}
$$

$$
\begin{aligned}
& C=2 \times \pi \times r \\
& C=2 \times 3.14 \times 110 \\
& C=690.8 \mathrm{~mm}
\end{aligned}
$$

AREA $=3.14 \times(110 \times 110)$
AREA $=3.14 \times(12100)$
AREA $=37994 \mathrm{~mm}^{2}$

CIRCLE AREA AND CIRCUMFERENCE EXAMINATION QUESTIONS

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS A student is trying to work the ergonomic dimensions (measurements) for the 'round' handle of a machine vice, that he intends to manufacture. The student measures the radius of the handle of an existing handle and finds it to be 25 mm .

What is the circumference of the handle?
What is the area of the 'round' end of the handle?

FORMULA
AREA $=\pi r^{2}$
$\pi(\mathrm{pi})=3.14$

AREA $=3.14 \times(25 \times 25)$
AREA $=3.14 \times(625)$
AREA $=1962.5 \mathrm{~mm}^{2}$

	RADIUS
HANDLE 1	20
HANDLE 2	25
HANDLE 3	24
HANDLE 4	30
HANDLE 5	28
TOTAL	127
AVERAGE	25.4 mm

FORMULA

CIRCUMFERENCE $=2 x \pi x r$
 $\pi(\mathrm{pi})=3.14$

$C=2 x \pi x r$
C $=2 \times 3.14 \times 25$
$C=157 \mathrm{~mm}$

The student collects the radius measurements of five machine vices and enters the data into a table of results, seen opposite.

Calculate the average radius and enter your result in the table

Why could this measurement be useful when designing a new machine vice, based on the design above?

The measurement could be applied to the new design of the machine vice handle. Using the average radius measurement should mean that the handle is a good ergonomic 'fit' for the majority of users.

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/

FORMULA
AREA $=\pi r^{2}$
$\pi(\mathrm{pi})=3.14$

The round section mild steel bar seen opposite, has a radius of 65 mm .

What is the area of the 'circle' at one end?
What is the circumference of the round section bar?

FORMULA

$$
\begin{gathered}
\text { CIRCUMFERENCE }=2 \times \pi \times r \\
\pi(\mathrm{pi})=3.14
\end{gathered}
$$

\qquad
\qquad

The round section mild steel bar seen opposite, has a radius of 110 mm .

What is the area of the 'circle' at one end?
What is the circumference of the round section bar?

FORMULA

$$
\begin{gathered}
\text { CIRCUMFERENCE }=2 \times \pi \times r \\
\pi(\mathrm{pi})=3.14
\end{gathered}
$$

\qquad

CIRCLE AREA AND CIRCUMFERENCE EXAMINATION QUESTIONS

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017 A student is trying to work the ergonomic dimensions (measurements) for the 'round' handle of a machine vice, that he intends to manufacture. The student measures the radius of the handle of an existing handle and finds it to be 25 mm .

What is the circumference of the handle?
What is the area of the 'round' end of the handle?

FORMULA
AREA $=\pi r^{2}$
$\pi(\mathrm{pi})=3.14$

FORMULA

CIRCUMFERENCE $=2 \times \pi \times r$ $\pi(p i)=3.14$

The student collects the radius measurements of five machine vices and enters the data into a table of results, seen opposite.

Calculate the average radius and enter your result in the table

Why could this measurement be useful when designing a new machine vice, based on the design above?

CIRCLE AREA AND CIRCUMFERENCE EXAMINATION QUESTIONS

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

A piece of steel tube can be seen opposite. The external and internal diameters can be read from the diagram.

What is the area of the surface at one end of the steel?

FORMULA

AREA $=\pi r^{2}$
$\pi(\mathrm{pi})=3.14$

Treat the surface at the end of the tube as two circles and find the area of each one:

EXTERNAL DIAMETER

AREA $=\pi r^{2}$

AREA $=3.14 \times(60 \times 60)$
AREA $=3.14 \times(3600)$
AREA $=11304 \mathrm{~mm}^{2}$

INTERNAL DIAMETER
AREA $=\pi r^{2}$
AREA $=3.14 \times(45 \times 45)$
AREA $=3.14 \times(2025)$
AREA $=6358.5 \mathrm{~mm}^{2}$

Then, subtract the area of the internal circle from the area of the external circle, to find the total surface area of the tube.

$$
11304-6358.5=4945.5 \mathrm{~mm}^{2}
$$

The total surface area of one end of the tube is $4945.5 \mathrm{~mm}^{2}$

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

A piece of steel tube can be seen opposite. The external and internal diameters can be read from the diagram.

What is the area of the surface at one end of the steel?

FORMULA

$$
\begin{aligned}
& \text { AREA }=\pi r^{2} \\
& \pi(\mathrm{pi})=3.14
\end{aligned}
$$

Treat the surface at the end of the tube as two circles and find the area of each one:
EXTERNAL DIAMETER

INTERNAL DIAMETER

\qquad
\qquad
\qquad
\qquad

Then, subtract the area of the internal circle from the area of the external circle, to find the total surface area of the tube.
\qquad
\qquad
\qquad
The total surface area of one end of the tube is \qquad

