MATHEMATICAL SKILLS

AREA OF A TRIANGLE AND ASSOCIATED EXAMINATION QUESTIONS

DESIGN AND TECHNOLOGY

NOT FOR SALE OR REDISTRIBUTION

THIS MATERIAL CANNOT BE EDITED OR PLACED ON ANY OTHER FORM OF MEDIA, INCLUDING POWERPOINTS, INTRANETS, WEBSITES ETC...

Definition: A triangle can be regarded as a polygon with three sides.

FORMULA

AREA $=1 / 2 \times$ BASE \times HEIGHT

AREA $=1 / 2 b \times h$
$\operatorname{AREA}=\frac{\mathrm{b} \times \mathrm{h}}{2}$

SAMPLE QUESTIONS

A triangle has a base of 60 mm and a height of 80 mm

AREA $=1 / 2 \times$ BASE \times HEIGHT
AREA $=\frac{60 \times 80}{2}$
$A R E A=\frac{4800}{2}$
AREA $=2400 \mathrm{~mm}^{2}$
A triangle has a base of 40 mm and a height of 50 mm

AREA $=1 / 2 \times$ BASE \times HEIGHT
AREA $=\frac{40 \times 50}{2}$
AREA $=\frac{2000}{2}$
AREA $=1000 \mathrm{~mm}^{2}$

A triangle has a base of 70 mm and a height of 90 mm

AREA $=1 / 2 \times$ BASE \times HEIGHT
AREA $=\frac{70 \times 90}{2}$
AREA $=\frac{6300}{2}$
AREA $=3150 \mathrm{~mm}^{2}$

A triangle has a base of 100 mm and a height of 120 mm

AREA $=1 / 2 \times$ BASE \times HEIGHT
AREA $=\frac{100 \times 120}{2}$
$A R E A=\frac{12000}{2}$
AREA $=6000 \mathrm{~mm}^{2}$

A triangle has a base of 75 mm and a height of 50 mm

AREA $=1 / 2 \times$ BASE \times HEIGHT
AREA $=\frac{75 \times 50}{2}$
AREA $=\frac{3750}{2}$
AREA $=1875 \mathrm{~mm}^{2}$

A triangle has a base of 45 mm and a height of 55 mm

AREA $=1 / 2 \times$ BASE \times HEIGHT
AREA $=\frac{45 \times 55}{2}$
AREA $=\frac{2475}{2}$
AREA $=1237.5 \mathrm{~mm}^{2}$

A triangle has a base of 110 mm and a height of 130 mm

AREA $=1 / 2 \times$ BASE \times HEIGHT

AREA $=\frac{110 \times 130}{2}$
AREA $=\frac{14300}{2}$
AREA $=7150 \mathrm{~mm}^{2}$

A triangle has a base of 300 mm and a height of 400 mm

AREA $=1 / 2 \times$ BASE \times HEIGHT
AREA $=\frac{300 \times 400}{2}$
$A R E A=\frac{120000}{2}$
AREA $=60000 \mathrm{~mm}^{2}$

Definition: A triangle can be regarded as a polygon with three sides.

FORMULA

AREA = 1/2 X BASE X HEIGHT

AREA $=1 / 2 \mathrm{~b} \times \mathrm{h}$
$\mathrm{AREA}=\frac{\mathrm{b} \times \mathrm{h}}{2}$

SAMPLE QUESTIONS

A triangle has a base of 60 mm and a height of 80 mm

A triangle has a base of 40 mm and a height of 50 mm

AREA $=1 / 2 \times$ BASE \times HEIGHT

AREA $=1 / 2 \times$ BASE \times HEIGHT

A triangle has a base of 70 mm and a height of 90 mm

A triangle has a base of 100 mm and a height of 120 mm

AREA $=1 / 2 \times$ BASE \times HEIGHT

A triangle has a base of 75 mm and a height of 50 mm

A triangle has a base of 45 mm and a AREA $=1 / 2 \times$ BASE \times HEIGHT height of 55 mm

A triangle has a base of 110 mm and a height of 130 mm

AREA $=1 / 2 \times$ BASE \times HEIGHT

A triangle has a base of 300 mm and a height of 400 mm

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS
https://www.facebook.com/groups/254963448192823/
With an obtuse triangle, where the top (vertex) of the

FORMULA - REMAINS THE SAME

$$
\begin{gathered}
\text { AREA }=1 / 2 \times \text { BASE } \times \text { HEIGHT } \\
\text { AREA }=1 / 2 b \times h \\
\text { AREA }=\frac{b \times h}{2}
\end{gathered}
$$

AREA $=1 / 2 \times$ BASE \times HEIGHT
AREA $=\frac{600 \times 800}{2}$
$\operatorname{AREA}=\frac{480000}{2}$
AREA $=240000 \mathrm{~mm}^{2}$

PRACTICAL EXERCISE:

Cut a number of obtuse triangles from 'brown' box cardboard.

Then calculate the areas of each triangle, using a plumb line to work out the height.

BASE=

HEIGHT=

CARDBOARD TRIANGLE 1

BASE=

HEIGHT=

CARDBOARD TRIANGLE 1

BASE=

HEIGHT=

CARDBOARD TRIANGLE 1

BASE=

HEIGHT=

AREA OF A TRIANGLE - EXAMINATION QUESTIONS

SQUARE PYRAMID

Below is a model a typical village church.
The roof of the tower is a square pyramid.

1. What is the area of one side of the square pyramid?

AREA $=1 / 2 \times$ BASE \times HEIGHT

AREA $=\frac{250 \times 300}{2}$
$A R E A=\frac{75000}{2}$
AREA $=37500 \mathrm{~mm}^{2}$
2. The labels X and Y represent the same part, one side of the square pyramid. Why does Y appear taller than X ?
' Y ' appears taller than ' X ', because each side of the square pyramid is tilted towards the pyramid's VERTEX, giving the appearance of it being shorter than it actually is.
' Y ' is the side of the pyramid held perfectly straight upwards, not inclined / tilted towards the vertex. This gives us the actual 'true' shape of the triangle.

AREA $=1 / 2 \times$ BASE \times HEIGHT
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. The labels X and Y represent the same part, one side of the square pyramid. Why does Y appear taller than X ?
\qquad
\qquad
\qquad
\qquad
\qquad

