MATHEMATICAL SKILLS

VOLUME OF A CUBE AND

ASSOCIATED GEOMETRICAL SHAPES

DESIGN AND TECHNOLOGY

NOT FOR SALE OR REDISTRIBUTION
THIS MATERIAL CANNOT BE EDITED OR PLACED ON ANY OTHER
FORM OF MEDIA, INCLUDING POWERPOINTS, INTRANETS, WEBSITES ETC...

HOW TO CALCULATE THE VOLUME OF A CUBE

DEFINITION: A cube is a solid object, composed of six equal squares, with a 90 degree angle between adjacent sides.

All the sides of a cube are the same measurement. There are two similar formulas for calculating a cube's volume.

$\operatorname{VOLUME}(\mathrm{V})=\mathrm{A} \times \mathrm{A} \times \mathrm{A}$ ORA ${ }^{3}$

EXAMPLE 1

If the measurement of one side is 100 mm :

VOLUME $=100 \mathrm{~mm} \times 100 \mathrm{~mm} \times 100 \mathrm{~mm}$ VOLUME $=1000000 \mathrm{~mm}^{3}$ or $1000 \mathrm{~cm}^{3}$

EXAMPLE 2

If the measurement of one side is 320 mm :
VOLUME $=320 \mathrm{~mm} \times 320 \mathrm{~mm} \times 320 \mathrm{~mm}$ VOLUME $=32768000 \mathrm{~mm}^{3}$ or $32768 \mathrm{~cm}^{3}$

QUESTION 1

What is the volume of the cube shown opposite?

$\operatorname{VOLUME}(\mathrm{V})=\mathrm{A} \times \mathrm{A} \times \mathrm{A}$ OR A^{3}

If the measurement of one side is 90 mm :
VOLUME $=90 \mathrm{~mm} \times 90 \mathrm{~mm} \times 90 \mathrm{~mm}$
VOLUME $=729000 \mathrm{~mm}^{3}$ or $729 \mathrm{~cm}^{3}$

QUESTION 2

What is the volume of the cube shown opposite?

$$
\begin{gathered}
\operatorname{VOLUME}(\mathrm{V})=\mathrm{A} \times \mathrm{A} \times \mathrm{A} \\
O R \mathrm{~A}^{3}
\end{gathered}
$$

If the measurement of one side is 120 mm :
VOLUME $=120 \mathrm{~mm} \times 120 \mathrm{~mm} \times 120 \mathrm{~mm}$ VOLUME $=1728000 \mathrm{~mm}^{3}$ or $1728 \mathrm{~cm}^{3}$

QUESTION 3

What is the volume of the cube shown opposite?

$\operatorname{VOLUME}(\mathrm{V})=\mathrm{A} \times \mathrm{A} \times \mathrm{A}$ OR A^{3}

If the measurement of one side is 55 mm :
VOLUME $=55 \mathrm{~mm} \times 55 \mathrm{~mm} \times 55 \mathrm{~mm}$
VOLUME $=166375 \mathrm{~mm}^{3}$ or $166.375 \mathrm{~cm}^{3}$

QUESTION 1

What is the volume of the cube shown opposite?
$\operatorname{VOLUME}(\mathrm{V})=\mathrm{A} \times \mathrm{A} \times \mathrm{A}$ OR A ${ }^{3}$
\qquad
\qquad
\qquad
\qquad

QUESTION 2

What is the volume of the cube shown opposite?
$\operatorname{VOLUME}(\mathrm{V})=\mathrm{A} \times \mathrm{A} \times \mathrm{A}$ OR A ${ }^{3}$
\qquad
\qquad
\qquad
\qquad

QUESTION 3

What is the volume of the cube shown opposite?

$$
\begin{gathered}
\operatorname{VOLUME}(\mathrm{V})=A \times A \times A \\
O R A^{3}
\end{gathered}
$$

EXAM QUESTION - CUBE

A solid cube of aluminium (A) has 200 mm sides. However, a smaller area in the form of a cube with 100 mm length sides, has been machined from the top surface (B).
What is the volume of the finished 3D shape?
How to work out the answer:
Start by treating both A and B as solid cubes.
Work out the volume of each cube A and B

CUBE 'A'

If the measurement of one side is 200 mm :
VOLUME $=200 \mathrm{~mm} \times 200 \mathrm{~mm} \times 200 \mathrm{~mm}$ VOLUME $=8000000 \mathrm{~mm}^{3}$ or $8000 \mathrm{~cm}^{3}$

CUBE 'B'
If the measurement of one side is 100 mm :
VOLUME $=100 \mathrm{~mm} \times 100 \mathrm{~mm} \times 100 \mathrm{~mm}$
VOLUME $=1000000 \mathrm{~mm}^{3}$ or $1000 \mathrm{~cm}^{3}$

Then, subtract the volume of B away from the volume of A, to find the final overall volume

FINAL VOLUME $=\mathrm{A}-\mathrm{B}$
FINAL VOLUME $=8000000 \mathrm{~mm}^{3}-1000000 \mathrm{~mm}^{3}$
FINAL VOLUME $=7000000 \mathrm{~mm}^{3}$ or $7000 \mathrm{~cm}^{3}$

EXAM QUESTION - CUBE

A solid cube of aluminium (A) has 200mm sides. However, a smaller area in the form of a cube with 100 mm length sides, has been machined from the top surface (B).
What is the volume of the finished 3D shape? Explain your working out.

EXAM QUESTION - CUBE

The unusual solid geometrical shape shown opposite can be treated as two cubes.

Calculate the entire volume of the shape/form.

Explain your working out.

The measurement of a side of cube A is clearly shown as 150 mm
To work out the length of one side of cube B, simply subtract 150 mm from the overall height of the shape.

225mm (overall height) - 150 mm (length of one side of cube A)
$225 m m-150 \mathrm{~mm}=75 \mathrm{~mm}$ (this is the length of one side of cube B)

Then work out the volume of cubes A and B

CUBE 'A'

If the measurement of one side is 150 mm :

$$
\begin{array}{ll}
\text { VOLUME }=150 \mathrm{~mm} \times 150 \mathrm{~mm} \times 150 \mathrm{~mm} & \text { VOLUME }=75 \mathrm{~mm} \times 75 \mathrm{~mm} \times 75 \mathrm{~mm} \\
\text { VOLUME }=3375000 \mathrm{~mm}^{3} \text { or } 3375 \mathrm{~cm}^{3} & \text { VOLUME }=421875 \mathrm{~mm}^{3} \text { or } 421.875 \mathrm{~cm}^{3}
\end{array}
$$

Then, add the volume of cube B with the volume of cube A, to find the final overall volume

FINAL VOLUME $=\mathrm{A}+\mathrm{B}$
FINAL VOLUME $=3375000 \mathrm{~mm}^{3}+421875 \mathrm{~mm}^{3}$
FINAL VOLUME $=3796875 \mathrm{~mm}^{3}$ or $3796.875 \mathrm{~cm}^{3}$

EXAM QUESTION - CUBE

The unusual solid geometrical shape shown opposite can be treated as two cubes.

Calculate the entire volume of the shape/form.

Explain your working out.

