

FORMOF MEDIA, INCLUDING POWERPOINTS, INTRANETS, WEBSITES

 ETC...
HOW TO CALCULATE THE VOLUME OF A CYLINDER

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS
https://www.facebook.com/groups/254963448192823/
www.technologystudent.com © 2017
DEFINITION: A three dimensional geometrical shape, that has a circle at each end of a single curved surface.

In order to calculate the volume of a cylinder, the height and radius of the circular top /bottom must be known. The following formula is used to calculate the volume.

$$
\begin{gathered}
\underset{\text { volume }}{\mathrm{V}}=\underset{\mathrm{pix} \times \text { radius²} \times \text { height }}{ } \mathrm{r}^{2} \mathrm{~m} \\
\pi(\mathrm{pi})=3.14
\end{gathered}
$$

Calculate the volume of the cylinders seen below.

For the purpose of these calculations

$$
\pi(p i)=3.14
$$

$$
v=\pi r^{2 h}
$$

volume $=3.14 \times 60 \mathrm{~mm} \times 60 \mathrm{~mm} \times 120 \mathrm{~mm}$
volume $=1356480 \mathrm{~mm}^{3}$

or

volume $=1356.480 \mathrm{~cm}^{3}$

```
\[
v=\pi r^{2} h
\]
\[
\text { volume }=3.14 \times 80 \mathrm{~mm} \times 80 \mathrm{~mm} \times 140 \mathrm{~mm}
\]
\[
\text { volume }=2813440 \mathrm{~mm}^{3}
\]
or
\[
\text { volume }=2813.440 \mathrm{~cm}^{3}
\]
```


Calculate the volume of the cylinders seen below.

For the purpose of these calculations

$$
\pi(p i)=3.14
$$

FORMULA

$$
v=\pi r^{2 h}
$$

volume $=$ pi x radius $^{2} \mathrm{x}$ height

$$
\pi(\mathrm{pi})=3.14
$$

\qquad
\qquad
\qquad
\qquad
\qquad

The solid steel object seen below, has been manufactured on an engineering centre lathe. It is one solid piece. Calculate the total volume.

In order to calculate the entire volume of the engineered solid, it is treated as two separate parts. Part A is the smaller cylinder and part B is the larger cylinder.

PART A
$$
v=\pi r^{2} h
$$
volume $=3.14 \times 20 \mathrm{~mm} \times 20 \mathrm{~mm} \times 30 \mathrm{~mm}$
volume $=37680 \mathrm{~mm}^{3}$
or
volume $=37.680 \mathrm{~cm}^{3}$

Then add both volumes together, to find the overall volume of the engineered object.

FINAL VOLUME = A + B
FINAL VOLUME $=37680 \mathrm{~mm}^{3}+452160 \mathrm{~mm}^{3}$
FINAL VOLUME $=489840 \mathrm{~mm}^{3}$ or $489.84 \mathrm{~cm}^{3}$

EXAMINATION QUESTION - CYLINDER - VOLUME

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017
The solid steel object seen below, has been manufactured on an engineering centre lathe. It is one solid piece. Calculate the total volume.

In order to calculate the entire volume of the engineered solid, it is treated as two separate parts. Part A is the smaller cylinder and part B is the larger cylinder.

The solid cylindrical object seen below, is engineered from mild steel, with a large machined 'blind' hole, in the top surface.

Calculate the volume of the engineered object.

The cylindrical object is treated as two separate cylinders.

Part A is the 'blind' hole. Part B is the cylinder.

PART A

$$
v=\pi r^{2} h
$$

volume $=3.14 \times 30 \mathrm{~mm} \times 30 \mathrm{~mm} \times 40 \mathrm{~mm}$
volume $=113040 \mathrm{~mm}^{3}$
or
volume $=113.040 \mathrm{~cm}^{3}$

PART B

$$
v=\pi r^{2} h
$$

volume $=3.14 \times 60 \mathrm{~mm} \times 60 \mathrm{~mm} \times 130 \mathrm{~mm}$
volume $=1469520 \mathrm{~mm}^{3}$
or
volume $=1469.520 \mathrm{~cm}^{3}$

Then subtract the volume of part A from the volume of part B, to find the overall volume of the engineered object.

$$
\begin{aligned}
& \text { FINAL VOLUME }=\mathrm{B}-\mathrm{A} \\
& \text { FINAL VOLUME }=1469520 \mathrm{~mm}^{3}-113040 \mathrm{~mm}^{3} \\
& \text { FINAL VOLUME }=1356480 \mathrm{~mm}^{3} \text { or } 1356.48 \mathrm{~cm}^{3}
\end{aligned}
$$

The solid cylindrical object seen below, is engineered from mild steel, with a large machined 'blind' hole, in the top surface.

Calculate the volume of the engineered object.

The cylindrical object is treated as two separate cylinders.

Part A is the 'Blind' hole.
Part B is the cylinder.

