

HOW TO CALCULATE THE VOLUME OF A CYLINDER ATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS

DEFINITION: A three dimensional geometrical shape, that has a circle at each end of a single curved surface.

In order to calculate the volume of a cylinder, the height and radius of the circular top /bottom must be known. The following formula is used to calculate the volume.

 $v = \pi r^2 h$ volume = pi x radius² x height

 π (pi) = 3.14

 $=\pi r^2h$

volume = 3.14 x 50mm x 50mm x 100mm $volume = 785000 mm^{3}$ or

volume = 785 cm^3

QUESTIONS - VOLUME OF A CYLINDER WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

Calculate the volume of the cylinders seen below.

For the purpose of these calculations π (pi) = 3.14

FORMULA

 $v = \pi r^2 h$

volume = pi x radius² x height

π (pi) = 3.14

 $v = \pi r^{2}h$ volume = 3.14 x 60mm x 60mm x 120mm volume = 1356480mm³ Or volume = 1356.480cm³

 $v = \pi r^{2}h$ volume = 3.14 x 80mm x 80mm x 140mm volume = 2813440mm³ Or volume = 2813.440cm³

 $v = \pi r^{2}h$ volume = 3.14 x 75mm x 75mm x 135mm volume = 2384437.5mm³ Or volume = 2384.437cm³

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

The solid steel object seen below, has been manufactured on an engineering centre lathe. It is one solid piece. Calculate the total volume.

Then add both volumes together, to find the overall volume of the engineered object.

FINAL VOLUME = A + B FINAL VOLUME = 37680mm³ + 452160mm³ FINAL VOLUME = 489840mm³ or 489.84cm³ WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

The solid steel object seen below, has been manufactured on an engineering centre lathe. It is one solid piece. Calculate the total volume.

In order to calculate the entire volume of the engineered solid, it is treated as two separate parts. Part A is the smaller cylinder and part B is the larger cylinder.

EXAMINATION QUESTION - CYLINDER - VOLUME WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

The solid cylindrical object seen below, is engineered from mild steel, with a large machined 'blind' hole, in the top surface.

Calculate the volume of the engineered object.

Then subtract the volume of part A from the volume of part B, to find the overall volume of the engineered object.

FINAL VOLUME = B - A FINAL VOLUME = 1469520mm³ - 113040mm³ FINAL VOLUME = 1356480mm³ or 1356.48cm³

EXAMINATION QUESTION - CYLINDER - VOLUME

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

The solid cylindrical object seen below, is engineered from mild steel, with a large machined 'blind' hole, in the top surface.

Calculate the volume of the engineered object.

The cylindrical object is treated as two separate cylinders.

Part A is the 'Blind' hole. Part B is the cylinder.