MATHEMATICS - VOLUMES - REVISION CARDS

All the sides of a cube are the same measurement. There are two similar formulas for calculating a cube's volume.

VOLUME (V) =A x A x A OR A

EXAMPLE 1
If the measurement of one side is 100 mm :

$$
\text { VOLUME }=100 \mathrm{~mm} \times 100 \mathrm{~mm} \times 100 \mathrm{~mm}
$$ VOLUME $=1000000 \mathrm{~mm}^{3}$ or $1000 \mathrm{~cm}^{3}$

$$
\text { EXAMPLE } 2
$$

If the measurement of one side is 320 mm : VOLUME $=320 \mathrm{~mm} \times 320 \mathrm{~mm} \times 320 \mathrm{~mm}$ VOLUME $=32768000 \mathrm{~mm}^{3}$ or $32768 \mathrm{~cm}^{3}$

HOW TO CALCULATE THE VOLUME

 OF A RECTANGULAR PRISMDEFINITION: A rectangular prism is a solid object, composed of six rectangles, with a 90 degree angle between adjacent sides. Opposite sides of a rectangular prism are equal and parallel.

Unlike a cube, the area of the sides of a rectangular prism / cuboid are not the same, consequently the formula for calculating the volume is as follows:

HOW TO CALCULATE THE VOLUME OF ACYLINDER

DEFINITION: A three dimensional geometrical shape, that has a circle at each end of a single curved surface.

FIRST, AREA OF A CIRCLE = TT X R ${ }^{2}$ CIRCUMFERENCE = $2 \times$ TT X R

In order to calculate the volume of a cylinder, the height and radius of the circular top /bottom must be known. The following formula is used to calculate the volume.

$$
\pi(\mathrm{pi})=3.14 \quad \mathrm{~V}=\pi r^{2} h
$$

volume $(v)=$ pi x radius $^{2} x$ height

MATHEMATICS - VOLUMES - REVISION CARDS

HOW TO CALCULATE THE VOLUME OF A REGULAR SQUARE PYRAMID

DEFINITION: A Regular Square Pyramid has a square base with triangular sides. The apex (highest point), is in line with the centre of the square base.

CALCULATE THE AREA OF BASE FIRST

$$
\text { AREA OF BASE }=\mathrm{LENGTH}{ }^{2}
$$

AREA OF BASE $=60 \mathrm{~mm} \times 60 \mathrm{~mm}=3600 \mathrm{~mm}^{2}$ THEN APPLY THE FOLLOWING FORMULA

Volume $=\frac{1}{3} \times$ Base \times Height

$$
\mathrm{V}=\frac{1}{3} \times 3600 \mathrm{~mm} \times 100 \mathrm{~mm}
$$

$V=\frac{1}{3} \times 360000 \mathrm{~mm}$
$V=\frac{360000 \mathrm{~mm}}{3}=120000 \mathrm{~mm}^{3}$

60 mm 60mm

HOW TO CALCULATE THE VOLUME OF A CONE

DEFINITION: A cone has one surface with a circular base. The vertex is directly above the centre of the circular base.

If the height (h) is 50 mm and the radius is 40 mm Then:

$$
\begin{aligned}
& v=1 / 3 \pi r^{2} h \\
& v=\frac{1}{3} \times 3.14 \times(40 \times 40) \times 50 \\
& v=\frac{1}{3} \times 251200 \\
& v=\frac{25177}{3}=83733.33 \mathrm{~mm}^{3}
\end{aligned}
$$

HOW TO CALCULATE THE VOLUME

OF A SPHERE
DEFINITION: A sphere is an object that is absolutely symmetrical about it's centre. From any angle it appears to be a circle, but it is a true three dimensional object.

EXAMPLE CALCULATION

$V=4 / 3 \pi r^{3}$

$v=\frac{4}{3} \times \frac{3.14 \times(30 \times 30 \times 30)}{1}$
$v=\frac{4}{3} \times \frac{3.14 \times(27000)}{1}$
$v=\frac{4}{3} \times \frac{84780}{1}$
$v=\frac{339120}{3}$
$v=113040 \mathrm{~mm}^{3}$

